Mark interactions

[1]:
from __future__ import print_function

import numpy as np
import pandas as pd

from bqplot import *
from ipywidgets import Layout

Scatter diagram

Selection in scatter diagrams

Click on a point in the scatter plot to select it and then execute the cell below to check the selection. Finally, try holding down the Ctrl key (or on Mac) and clicking on another point. Clicking on the background will reset the selection.

[2]:
x_sc = LinearScale()
y_sc = LinearScale()

x_data = np.arange(20)
y_data = np.random.randn(20)

scatter_chart = Scatter(
    x=x_data,
    y=y_data,
    scales={"x": x_sc, "y": y_sc},
    colors=["dodgerblue"],
    interactions={"click": "select"},
    selected_style={"opacity": 1.0, "fill": "DarkOrange", "stroke": "Red"},
    unselected_style={"opacity": 0.5},
)

ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation="vertical", tick_format="0.2f")

Figure(marks=[scatter_chart], axes=[ax_x, ax_y])
[3]:
scatter_chart.selected

Alternatively, the selected attribute can be defined directly in Python, for example with the following line:

[4]:
scatter_chart.selected = [1, 2, 3]

Streudiagramm-Interaktionen und -Tooltips

[5]:
from ipywidgets import *
[6]:
x_sc = LinearScale()
y_sc = LinearScale()

x_data = np.arange(20)
y_data = np.random.randn(20)

dd = Dropdown(options=["First", "Second", "Third", "Fourth"])
scatter_chart = Scatter(
    x=x_data,
    y=y_data,
    scales={"x": x_sc, "y": y_sc},
    colors=["dodgerblue"],
    names=np.arange(100, 200),
    names_unique=False,
    display_names=False,
    display_legend=True,
    labels=["Blue"],
)
ins = Button(icon="fa-legal")
scatter_chart.tooltip = ins

scatter_chart2 = Scatter(
    x=x_data,
    y=np.random.randn(20),
    scales={"x": x_sc, "y": y_sc},
    colors=["orangered"],
    tooltip=dd,
    names=np.arange(100, 200),
    names_unique=False,
    display_names=False,
    display_legend=True,
    labels=["Red"],
)

ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation="vertical", tick_format="0.2f")

Figure(marks=[scatter_chart, scatter_chart2], axes=[ax_x, ax_y])

Define call backs and customised messages:

[7]:
def print_event(self, target):
    print(target)


# Adding call back to scatter events
# print custom mssg on hover and background click of Blue Scatter
scatter_chart.on_hover(print_event)
scatter_chart.on_background_click(print_event)

# print custom mssg on click of an element or legend of Red Scatter
scatter_chart2.on_element_click(print_event)
scatter_chart2.on_legend_click(print_event)

Define figure as tooltip:

[8]:
# Adding figure as tooltip
x_sc = LinearScale()
y_sc = LinearScale()

x_data = np.arange(10)
y_data = np.random.randn(10)

lc = Lines(x=x_data, y=y_data, scales={"x": x_sc, "y": y_sc})
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation="vertical", tick_format="0.2f")
tooltip_fig = Figure(
    marks=[lc], axes=[ax_x, ax_y], layout=Layout(min_width="600px")
)

scatter_chart.tooltip = tooltip_fig
[9]:
# Changing interaction from hover to click for tooltip
scatter_chart.interactions = {"click": "tooltip"}

Line diagram

[10]:
# Adding default tooltip to Line Chart
x_sc = LinearScale()
y_sc = LinearScale()

x_data = np.arange(100)
y_data = np.random.randn(3, 100)

def_tt = Tooltip(
    fields=["name", "index"], formats=["", ".2f"], labels=["id", "line_num"]
)
line_chart = Lines(
    x=x_data,
    y=y_data,
    scales={"x": x_sc, "y": y_sc},
    tooltip=def_tt,
    display_legend=True,
    labels=["line 1", "line 2", "line 3"],
)

ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation="vertical", tick_format="0.2f")

Figure(marks=[line_chart], axes=[ax_x, ax_y])
[11]:
# Adding call back to print event when legend or the line is clicked
line_chart.on_legend_click(print_event)
line_chart.on_element_click(print_event)

Bar chart

[12]:
# Adding interaction to select bar on click for Bar Chart
x_sc = OrdinalScale()
y_sc = LinearScale()

x_data = np.arange(10)
y_data = np.random.randn(2, 10)

bar_chart = Bars(
    x=x_data,
    y=[y_data[0, :].tolist(), y_data[1, :].tolist()],
    scales={"x": x_sc, "y": y_sc},
    interactions={"click": "select"},
    selected_style={"stroke": "orange", "fill": "red"},
    labels=["Level 1", "Level 2"],
    display_legend=True,
)
ax_x = Axis(scale=x_sc)
ax_y = Axis(scale=y_sc, orientation="vertical", tick_format="0.2f")

Figure(marks=[bar_chart], axes=[ax_x, ax_y])
[13]:
# Adding a tooltip on hover in addition to select on click
def_tt = Tooltip(fields=["x", "y"], formats=["", ".2f"])
bar_chart.tooltip = def_tt
bar_chart.interactions = {
    "legend_hover": "highlight_axes",
    "hover": "tooltip",
    "click": "select",
}
[14]:
# Changing tooltip to be on click
bar_chart.interactions = {"click": "tooltip"}
[15]:
# Call back on legend being clicked
bar_chart.type = "grouped"
bar_chart.on_legend_click(print_event)

Histogram

[16]:
# Adding tooltip for Histogram
x_sc = LinearScale()
y_sc = LinearScale()

sample_data = np.random.randn(100)

def_tt = Tooltip(formats=["", ".2f"], fields=["count", "midpoint"])
hist = Hist(
    sample=sample_data,
    scales={"sample": x_sc, "count": y_sc},
    tooltip=def_tt,
    display_legend=True,
    labels=["Test Hist"],
    select_bars=True,
)
ax_x = Axis(scale=x_sc, tick_format="0.2f")
ax_y = Axis(scale=y_sc, orientation="vertical", tick_format="0.2f")

Figure(marks=[hist], axes=[ax_x, ax_y])
[17]:
# Changing tooltip to be displayed on click
hist.interactions = {"click": "tooltip"}
[18]:
# Changing tooltip to be on click of legend
hist.interactions = {"legend_click": "tooltip"}

Pie chart

[19]:
pie_data = np.abs(np.random.randn(10))

sc = ColorScale(scheme="Reds")
tooltip_widget = Tooltip(
    fields=["size", "index", "color"], formats=["0.2f", "", "0.2f"]
)
pie = Pie(
    sizes=pie_data,
    scales={"color": sc},
    color=np.random.randn(10),
    tooltip=tooltip_widget,
    interactions={"click": "tooltip"},
    selected_style={"fill": "red"},
)

pie.selected_style = {"opacity": "1", "stroke": "white", "stroke-width": "2"}
pie.unselected_style = {"opacity": "0.2"}

Figure(marks=[pie])
[20]:
# Changing interaction to select on click and tooltip on hover
pie.interactions = {"click": "select", "hover": "tooltip"}